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In this paper we present a derivation of Langevin equations of motion for long semiflexible particles and the
Smoluchowski equation together with the velocity distribution for suspended rigid polymers in the long-time
limit. The starting point is the induced force method of Mazur and Bedeaux@Physica A76, 235 ~1976!# and
Landau-Lifshitz@Fluid Mechanics~Pergamon, Oxford, 1987!# fluctuating hydrodynamics. Such a procedure
permits us to introduce in the description all the properties of the dynamics of the solvent in a rather straight-
forward way, which leads us to a precise derivation of friction coefficients, without assumptions taken out of
the theory itself, and to a description in terms of Langevin equations. The link between the mesoscopic
hydrodynamic description and a more coarse-grained one in terms of the Smoluchowski equation is thus
established by means of a singular perturbation method. The long-time limit in the dynamics of the suspended
particles permits us to also obtain the velocity distribution, which is not Maxwellian as postulated in classical
treatments of Brownian motion. The velocity distribution obtained in this way relates the dynamics of suspen-
sions to the dynamics of simple liquids. In addition, buoyancy and centrifugal forces are also obtained.
@S1063-651X~96!02810-3#

PACS number~s!: 61.25.Hq., 83.10.Nn, 83.10.Pp, 05.40.1j

I. INTRODUCTION

In the analysis of the dynamics of suspensions, it is of
great importance to develop models that, on one hand, repro-
duce the important features of the system and, on the other,
disregard all unimportant details, in a difficult balance be-
tween accuracy and feasibiliy. Suspensions are characterized
by a large difference in size and mass between the suspended
particles and the solvent molecules. Such a difference is the
basis of most of the simplifications that can be made to pro-
pose tractable models. We can mention two relevant ones:
first, the detailed molecular structure of the suspended par-
ticle is commonly ignored when the interest is in overall
motions and, second, the solvent can be regarded as a con-
tinuum interacting with the suspended particles via frictional
forces.

For instance, the classical theory of polymer solutions as
formulated by Kirkwood@1–4# is based on the classical
theory of Brownian motion@5# almost always in the diffu-
sion limit, which suppresses the explicit consideration of the
inertial forces. Thus the segments of the chain are considered
as moving with a mean drift velocity determined by the bal-
ance between the systematic frictional force, potential forces,
and the Brownian force. The latter is introduced as a ther-
modynamic force according to

FW i
B~$rWk%,t ![2kBT

]

]rW i
lnc~$rWk%,t !, ~1.1!

whererW i stands for the position of thei th particle,$rWk% de-
notes the ensemble of positions of thek51, . . . ,N particles,
and c($rWk%,t) is the probability density in configurational
space.c($rWk%,t) then follows the so-called Kirkwood diffu-
sion equation or Smoluchowski equation, which reads
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wherevW i
0 is the imposed velocity field at the positionrW i of

the i th particle.DWW i j is the diffusion matrix obtained from
hydrodynamic calculations andU is a given potential energy.

Kirkwood’s diffusion equation can be derived in the
framework of a complete phase space theory where the po-
sitions and velocities of polymer segments and solvent mol-
ecules are taken into account@6#. In Ref.@6#, for instance, the
starting point is the Liouville equation for the composite sys-
tem of solvent and polymers. The information about the rel-
evant dynamic quantity is thus extracted by means of a pro-
jector operator formalism. This procedure gives the
functional form of the equation for the probability density in
configuration space, as well as formal expressions for the
coefficients~friction or mobility tensors, for example! ap-
pearing in this equation. The complexity of these formal ex-
pressions is such that no explicit calculation can be carried
out without further assumptions@6#. A common one is due to
the fact that the solvent must satisfy the macroscopic equa-
tions of motion in the range of wavelengths and frequencies
concerned with the overall motions of the macromolecule,
and then the formal expressions for the friction coefficients
are replaced by those obtained from hydrodynamic calcula-
tions. In the context of the transport processes@7# and
Brownian motion, there are similar procedures to obtain ei-
ther Fokker-Planck equations for the probability density in
the complete phase space of the particles~velocities and po-
sitions! or Smoluchowski equations for the probability den-
sity in the configuration space. Again, such procedures start
with the Liouville equations for the complete systems@8–10#
in which hydrodynamics is invoked to obtain the desired
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expressions for the friction or mobility tensors. When estab-
lishing the diffusion equation to describe the dynamics of a
given system it is not always obvious which friction coeffi-
cient is appropriate. This can lead to errors in the choice
@11#.

Kirkwood’s diffusion equation or the Smoluchowski
equation describes only the evolution of the system in the
configuration space and no reference is made to the distribu-
tion function in velocity space that is needed to perform
averages on those quatities depending on the velocity. It is
then assumed that the distribution function in velocity space
follows a local Maxwellian of the form

)
i
expH @uW i2vW 0~rW i !#

2

2kBT
J , ~1.3!

whereuW i is the velocity of thei th particle andkBT has the
usual meaning.

In this paper our aim is twofold. First, from amesoscopic
description based on both the induced forces method@12#
and fluctuating hydrodynamics@14# we will obtain Langevin
equations for the motion of semiflexible particles modeled as
wormlike chains. The presence of rigid constraints is explic-
itly considered. Second, we derive the long-time behavior of
a suspension of rigid rods by using the fact that the velocity
of the particles reaches its steady-state distribution much
faster than the time in which configurational changes take
place. We then obtain the probability distribution in the com-
plete phase space, in which the dependence in the velocity is
explicitly given, as well as its relation with the Smolu-
chowski equation.

In our procedure, we start by describing the macromol-
ecule as an object of a given instantaneous shape with a
well-defined surface, under the action of some internal or
external potentials that contribute to its configuration and
dynamics. The solvent, constituted by much smaller mol-
ecules, is assumed as being a continuum whose dynamics is
well described by hydrodynamic equations for the density,
velocity field, pressure, and temperature. In addition, due to
the thermal motion of the solvent molecules there can exist
local variations of the hydrodynamic fields in space and
time. We will introduce random fluxes accounting for the
cause of these fluctuations@14#. With only these initial hy-
potheses, it is possible to derive Langevin equations for the
motion of the macromolecule. These Langevin equations
contain friction coefficients given in terms of integrals over
the fluid velocity field propagator that can be explicitly car-
ried out for some particular cases@15–18#. The stochastic
properties of the random forces follow from those of the
spontaneous fluctuations in the velocity field. From these
Langevin equations we will derive the equation of motion in
the phase space or Kramers equation. Such an equation will
be studied in the particular case of rigid rods in the long-time
limit with the aim of deriving the velocity distribution as
well as the Smoluchowski equation. It is found that the ve-
locity distribution can be explicitly given in this long-time
limit if the friction dominates over the inertia, showing a
non-Maxwellian behavior. This behavior is very important
from the formal point of view, since it allows the easy deri-
vation of transport equations.

Although, in this paper, we restrict our study to semiflex-
ible long particles, the analysis can straightforwardly be ex-
tended to interacting particles, both hydrodynamically and
via electromagnetic fields, for instance, and to objects of dif-
ferent shapes in colloidal dispersions. We believe that the
formalism developed here can be a poweful tool in the study
of suspension dynamics due to the analogy established be-
tween these Brownian systems and simple liquids. Although
this analogy has already been treated in the literature@19#,
the long-time limit discussed here constitutes a great simpli-
fication, although it retains the relevant information and, at
the same time, makes the theory useful for systems of inter-
est.

The paper is organized as follows. In Sec. II we will dis-
cuss the concept of induced force and derive the formal so-
lution of the velocity field in terms of the induced force
density and the random pressure tensor. In Sec. III we intro-
duce the mobility and friction kernels for semiflexible worm-
like chains and derive the equation of motion for the par-
ticles as well as an expansion of the surface fields in terms of
a complete orthogonal set of functions when constraints are
present. In Sec. IV, after arriving at the Kramers equation
from the equations of motion for the semiflexible wormlike
chain, we obtain the Smoluchowski equation and the prob-
ability distribution function for the particular case of a rigid
rod. Sections II and III are mainly devoted to details of the
use of the induced forces method to the system under con-
sideration. The reader interested only in the derivation of the
long-time limit of the Kramers equation can skip these two
sections and go directly to Sec. IV. Finally, Sec. V is devoted
to the conclusions drawn in this paper.

II. FORMAL SOLUTION OF THE VELOCITY FIELD

The system under consideration here will be an incom-
pressible Newtonian fluid of densityrs and shear viscosity
hs at constant temperatureT with particles in suspension.
Under these conditions of constant temperature and density,
the dynamic state of the solvent is thus described by the
Navier-Stokes equation for the velocity fieldvW (rW,t) @14#

rsS ]vW

]t
1vW •¹W vW D 52¹W •PWW ~rW,t !1FW ~2.1!

together with the incompressibility condition

¹W •vW 50, ~2.2!

valid outside the particles. In Eq.~2.1! FW (rW,t) is a volume
force density acting on every fluid element as, for instance, a

gravitational field.PWW (rW,t) is the pressure tensor given by

Pab5pdab2hsS ]vb

]r a
1

]va

]r b
D1Pab

R 5Pab
s 1Pab

R ,

~2.3!

where p is the hydrostatic pressure,Pab
S is the systematic

part of the pressure tensor, and the random pressure tensor is
denoted byPab

R According to fluctuating hydrodynamics
@14#, the random pressure tensor introduces a Gaussian
white-noise stochastic process with
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^PWW R~rW,t !&50, ~2.4!

^Pab
R ~rW,t !Pgm

R ~rW8,t8!&52kBThDabgmd~rW2rW8!d~ t2t8!,
~2.5!

where use has been made of the definition

Dabgm[dagdbm1damdbg2 2
3dabdgm . ~2.6!

The hydrodynamic problem is completly specified by giving
the boundary conditions on the surface of the particles and
on external boundaries. If the suspended particles are of size
much larger than the solvent molecules, the fluid velocity
field is found to satisfy stick boundary conditions on the
surface of the particles. Thus the fluid in contact with a given
element at the surface of a particle moves with the same
velocity as the surface element. Stick boundary conditions
will be assumed throughout the paper.

Since we want to describe the interaction between the
suspended particles and the solvent, we separate the com-
plete velocity field into an unperturbed velocity fieldvW 0 and
a perturbationvW 1. The former is caused by the external
boundaries and by the external fields acting on the bulk,
while the latter is due to the presence of the particles and to
the random pressure tensor. Throughout the paper we will
focus our attention on externally imposed steady homoge-

neous flows of the formvW 0(rW)5rW•bWW , wherebWW is a constant
tensor. The unperturbed velocity field is a solution of Eq.
~2.1! without perturbations and in the absence of particles

rsS ]vW 0
]t

1vW 0•¹W vW 0D 52¹W •PWW 0
S~rW,t !1FW , ~2.7!

where we have also made use of the fact that the pressure
tensor also admits a decomposition of the form

PWW S5PWW 0
S1PWW 1

S . For steady homogeneous flows Eq.~2.7! reads

rsvW 0~rW !•¹W vW 0~rW !52¹W p0~rW !1FW ~rW ! ~2.8!

since¹2vW 0(rW)50. The incompressibility condition implies

that ¹W •vW 050, which, in our case, turns into 1WW :bWW [trbWW 50,
where the symbol tr stands for the trace. In Eq.~2.8! p0(rW) is
the unperturbed pressure field. This last equation is in fact an
equation for the unperturbed pressure field whose role will
be discussed later on.

Since the particles as well as the fluctuations are very
small, the evolution of these perturbations satisfy the fully
linearized Navier-Stokes equation@14#

rs
]vW 1~rW,t !

]t
52¹W •PWW 1

S~rW,t !2¹W •PWW R~rW,t !. ~2.9!

Note that we have neglected the terms proportional to

vW 0•¹W vW 1 and vW 1•¹W vW 0, which introduce dependences of the
friction coefficients in the externally imposed velocity gradi-
ents. These corrections, although important, scale, however,
with the Reynolds number of the particles, which is ex-

tremely small for Brownian particles and usual velocity gra-
dients@20#. These corrections will be discussed elsewhere.

The solution of Eq.~2.9! satisfying the boundary condi-
tions at the surface of the particles gives the perturbed ve-
locity field from which the forces that the solvent exerts on
the particles can be calculated. However, the problem can be
reformulated by introducing induced forces, whose main ad-
vantage is to permit the evaluation of the hydrodynamic
forces without explicit determination of the velocity field.
One then reformulates the problem by assuming that the fluid
field is also defined inside the particles, so that Eq.~2.9! is
now valid in all the space, and the perturbations caused by
their motion are introduced through induced force densities
@12# FW (rW,t). These are nonzero only inside and at the surface
of the particles. These induced force densities are chosen
such that the pressure is constant inside the particle and that
the velocity field is continuous through the surface, which in
fact stands for the stick boundary conditions. Thus, taking all
of this into consideration, we arrive at

rs
]vW 1~rW,t !

]t
52¹W p1~rW,t !1hs¹W

2vW 1~rW,t !1FW ~rW,t !

2¹W •PWW R~rW,t !. ~2.10!

For convenience, we introduce here the Green’s function of
the perturbed field, which satisfies

rs
]GWW ~rW,t !

]t
2hs¹W

2GWW ~rW,t !51WW d~rW !d~ t !, ~2.11!

with

¹W •GWW ~rW,t !50 ~2.12!

due to the incompressibility of the fluid. To obtain an expres-

sion forGWW we introduce here the Fourier transform in space
of an arbitrary fieldA(rW,t) as

A~rW,t !5E dkW

~2p!3
eik

W
•rWA~kW ,t !, ~2.13!

with

A~kW ,t !5E drWe2 ikW•rWA~rW,t !. ~2.14!

Fourier transforming Eq.~2.11!, solving forGWW (kW ,t), and us-
ing Eq. ~2.13!, one can then obtain

GWW ~rW,t !5E dkW

~2p!3
eik

W
•rWe2nk2t

1WW 2kŴkŴ

rs
, ~2.15!

where the incompressibility condition has been used,

kŴ5kW /k, andn[hs /rs is the kinematic viscosity. An explicit
expression for this integral can be found in Eq.~2.26! of Ref.
@15#. Then the formal solution for the total velocity field
reads
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vW ~rW,t !5vW 01vW 1

5rW•bWW 1E
2`

t

dt8E drW8GWW ~rW2rW8,t2t8!•FW ~rW8,t8!

1vWR~rW,t !. ~2.16!

The random velocity field is defined by

vWR~rW,t ![E
2`

t

dt8E drW8GWW ~rW2rW8,t2t8!•@2¹W •PWW R~rW8,t8!#.

~2.17!

Equations~2.16! and ~2.17! show that the response of the
velocity field to the perturbations is neither instantaneous nor
local in space. This fact will be important in the derivation of
the transport equations. Here we will be concerned, however,
with the analysis of the long-time evolution equation for the
system. With this aim we then disregard the explicit time
dependence of the relaxation of the velocity field, referred to
as quasistatic approximation, which is valid for times larger
than l 2/n, l being some characteristic length of the particle.
In this case, Eq.~2.16! reduces to

vW ~rW,t !5vW 0~rW,t !1E drW8TWW ~rW2rW8!•FW ~rW8,t !1vWR~rW,t !,

~2.18!

whereTWW (rW) is the Oseen tensor, which is given by

TWW ~rW ![E
0

`

dtGWW ~rW,t !5E dkW

~2p!3
1WW 2kŴkŴ

hsk
2
eik

W
•rW

5
1

8phsurWu
~1WW 1rŴrŴ !. ~2.19!

Correspondingly, in Eq.~2.18! the random velocity field is

vWR~rW,t ![E drW8TWW ~rW2rW !•@2¹W •PWW R~rW8,t !#. ~2.20!

Further physical insight on the nature of the induced
forces can be obtained by analyzing the quasistatic approxi-
mation. Effectively, in this approximation the explicit time
dependence of the fluid field is disregarded. In this case, the
induced force density has only a surface component account-
ing for the discontinuity in the velocity gradient through the
surface~the velocity itself is continuous!. With such a force
field, the fluid inside moves as a rigid body in steady motion,
while the fluid motion outside caused by the induced force
field is the same as that caused by the presence of the real
particle @12,21#.

In this section we have obtained the formal solution for
the velocity field in terms of the induced forces and the ran-
dom stress tensor. In the next section we will use these re-
sults to derive the effect of the fluid on the motion of the
particle.

III. THE LANGEVIN EQUATION

Let us consider a single wormlike chain in suspension
@13#. The chain is of lengthL and circular section of radius
a. The circular shape of the section is assumed not to change
during the motion of the particle. Since we want to analyze
the long-time properties of the suspension, the formal solu-
tion of the velocity field will be given by Eq.~2.18!.

We introduce here a set of intrinsic coordinates for the
surface of the chain and the volume infinitesimally close to
it. We will define the central line as the curve joining the
centers of mass of the cross sections of the particle. The
position of the points of the central line at a given timet
expressed by the one-parameter vector fieldcW (s,t), wheres
is the contour length satisfyingusu<L/2. It is convenient to
define the unit vectors@22#

tŴ~s,t ![
dcW~s,t !

ds
, ~3.1!

nŴ ~s,t ![R~s,t !
dtŴ~s,t !

ds
5R~s,t !

d2cW~s,t !

ds2
, ~3.2!

bŴ ~s,t ![tŴ~s,t !3nŴ ~s,t !, ~3.3!

whereR(s,t)[ud2cW (s,t)/ds2u21 is the radius of curvature at
s at the timet. The use of the contour lengths as a param-
eter, on one hand, ensures that the tangent vector satisfies

utŴ u51 while, on the other, the normal vectornŴ is orthogonal

to tŴ . The third vector is often referred to asbinormal and

k(s,t)[udbŴ (s,t)/dsu is the geometrical torsion of the curve
@22#.

If cW (s,t) is specified, a given pointrW very close to the
surface of the particle can be univocally expressed as

rW5cW~s,t !1rW'~s,t !, ~3.4!

whererW'(s,t) is a vector lying on the plane defined by the

vectorsnŴ (s,t) and bŴ (s,t), i.e., perpendicular, by construc-

tion, to the tangent vectortŴ . Then, denoting byw the angle

betweenrW'(s,t) andnŴ (s,t) andr'[urW'u, the pointrW can be
given by specifying the set of quantities (s,r' ,w), which
will be used to parametrize the space inside and very close to
the particle.

In the quasistatic case under consideration, the induced
force density introduced in Sec. II is only nonzero at the
surface of the particle, which can be written as@21#

FW ~rW,t !drW5FW ~s!~s,w,t !d~s!~rW,t !r'dr'dwds, ~3.5!

where we have introduced the surfaced function d (s)(rW,t)
~cf. Appendix A!. In this paper we will consider that
R(s,t)@a for everys, which allows us to write

d~s!~rW,t !5d~r'2a!, ~3.6!
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which is a function of the instantaneous configuration. In Eq.
~3.5!, FW (s) is the induced force per unit area. Up to this point
our treatment has been exact. However, for a particle whose
aspect ratioa/L is smaller than 1 and for properties whose
characteristic length scale is larger thana, one can introduce
the following approximation: the induced force density is a
function only of the contour lengths. One then disregards
the explicit induced force distribution around the central line
and substitutes it by a uniform force distribution independent
of w

FW ~s!~s,w,t !.
fW~s,t !

2pa
, ~3.7!

where the new quantityfW(s,t) is an induced force per unit of
length, which will be used in what follows.

To obtain the equation of motion for the chain we will
multiply Eq. ~2.18! by the surfaced function. In view of the
stick boundary condition and the properties of the surface
d function given in Eqs.~A3! and~A4!, we can substitute the
complete velocity fieldvW (rW,t) by uW (w,s,t), where this last
quantity is the velocity of a given point of the surface of the
particle. Thus

uW ~s,w,t !d~r'2a!5vW 0~rW !d~r'2a!1d~r'2a!

3E drW8TWW ~rW2rW8!•@FW ~rW8,t !2¹W

•PWW R~rW8,t !#. ~3.8!

One can also disregard thew dependence of the velocity at
the surface since rotations around the central line cause a
very small perturbation in the fluid field. This is in agreement
with the approximation given by Eq.~3.7!. These two ap-
proximations are not valid for the rotation of a rodlike par-
ticle around its axis of symmetry@17#, which requires spe-
cific treatment of the force and velocity distributions around
its symmetry axis. According to this approximation, we can
integrate both members of Eq.~3.8! with respect to
r'dr'dw[drW' and divide by 2pa to obtain

uW ~s,t ![cW~s,t !•bWW 1E ds8mWW ~s,s8!• fW~s8,t !1uWR~s,t !,

~3.9!

where we have introduced the random velocity

uWR~s,t ![E drW'

2pa
d~r'2a!E drW8TWW ~rW2rW8!•@2¹W •PWW R~rW8,t !#

~3.10!

and the spatial mobility kernel

mWW ~s,s8![E drW'

2paE drW'8

2pa
d~r'2a!TWW ~rW2rW8!d~r'8 2a!.

~3.11!

Using Eq.~2.19! and changing the order of integration, the
mobility kernel can be rewritten as

mWW ~s,s8!5E dkW

~2p!3
1WW 2kŴ kŴ

hsk
2

f~kW ,s,t !f* ~kW ,s8,t !,

~3.12!

where the asterisk stands for the complex conjugate. The
mobility kernel is a 333 symmetric tensor. This property
arises from the symmetry of the Oseen tensor. The form
factor f(kW ,s,t) depends on the actual configuration of the
system. Using Eq.~3.4!, the form factor reads

f~kW ,s,t !5E drW'

2pa
eik

W
•rWd~r'2a!5eik

W
•cW~s,t !J0~k'a!,

~3.13!

wherek'[ukW•(1WW 2tŴtŴ )u, which depends ons, andJ0(x) is
the Bessel function of first kind and zeroth order.J0(x) is the
form factor taking into account the finite size of the cross
section of the particle and in fact ensures that the integration
in Eq. ~3.12! is perfectly convergent. Moreover, from Eqs.
~3.12! and ~3.13! it follows that the mobility kernel,

mWW (s,s8) is invariant under the exchanges→s8.

Introducing the friction kerneljWW (s,s8) as the generalized

inverse of the mobility kernelmWW (s,s8) @23# ~the symmetry
properties of the friction kernel are the same as those of the
mobility kernel, as it follows from its definition!, according
to

E
2L/2

L/2

ds9jWW~s,s9!•mWW ~s9,s8!5E
2L/2

L/2

ds9mWW ~s,s9!•jWW~s9,s8!

5d~s2s8!1WW , ~3.14!

we can invert Eq.~3.9! to obtain fW(s,t) in terms of

uW (s,t)2cW (s,t)•bWW anduWR(s,t), yielding

fW~s,t !5E
2L/2

L/2

ds8jWW~s,s8!•@uW ~s8,t !2cW~s8,t !•bWW #1 fWR~s,t !,

~3.15!

where the random force is given by

fWR~s,t ![E
2L/2

L/2

ds8jWW~s,s8!•uWR~s8,t !. ~3.16!

From the properties of the random pressure tensor given in
Eqs.~2.4! and~2.5! and the definition of the random velocity
Eq. ~3.10!, it can be proved that the random force satisfies
the properties

^ fWR~s,t !&50, ~3.17!

^ fWR~s,t ! fWR~s8,t8!&52kBTjWW~s,s8!d~ t2t8!, ~3.18!

where the configuration is kept frozen while the average over

all the realizations ofPWW R is performed. Equation~3.18! is the
fluctuation-dissipation theorem.

The motion of a given segment of the chain is given by
the system of equations
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cẆ~s,t !5uW ~s,t !, ~3.19!

m̃uẆ ~s,t !5 fWH~s,t !1 fW int~s,t !1 fWext~s,t !1gW ~s,t !,
~3.20!

where m̃ is the mass of the particle per unit of length and
fWH is the hydrodynamic force that accounts for the interac-
tion between the segment and the surrounding solvent. This
hydrodynamic force has two contributions. The first one
fWHa is related to the induced force density and will account
for the frictional and Brownian forces. The second contribu-
tion fWHb is a buoyancy force that appears due to the existence
of an unperturbed pressure gradient, according to Eq.~2.8!.
Effectively, the buoyancy force per unit of length experi-
enced by a segment located at the space pointcW (s,t) simply
follows from the integration of the pressure gradient over the
volumedV of the segment

fWHb~s,t !ds52E
dV

¹W p0

5dsE
0

a

dr'r'E
0

2p

dw@rsvW 0~rW !•¹W vW 0~rW !2FW ~rW !#

[@m̃scW~s,t !•bWW •bWW 1 fWb~s,t !#ds, ~3.21!

where we have defined the displaced solvent mass per unit of
length m̃s[rspa

2 and

fWb~s,t ![2E
0

2p

dwE
0

a

dr'r'FW ~rW !. ~3.22!

The homogeneous nature of the unperturbed velocity field
has also been used. In Eq.~3.20!, fW int stands for the segment-
segment interaction force in which we have included the
forces due stretching, bending, and torsion potentials@4#, as
well as the excluded-volume interactions@24#. We assume
that the constraints can be specified by a set of scalar equa-
tions of the form

L„cW~s,t !…50, ~3.23!

so that the system would beholonomic@25# if friction and
Brownian forces were not present@24#. The constraints re-
sponding to this equation arerigid ~or scleronomicsince they
do not explicitly depend on the time!. This would physically
correspond to some hindrance in the configuration of the real
polymer that we want to reflect in the model used to describe
it. For instance, polymers whose chemical structure imposes
very large potential energies for the bending of the backbone
can be thought of as rigid polymers or piecewise rigid poly-
mers if the rigidity is not global@26#. Such constraints can be
formulated by introducing equations of the type of Eq.
~3.23!. Another example is the less familiar model of a con-
tinuous chain whose local radius of curvature is constant,
which would be reminiscent of the fact that locally the bond
angles are fixed, although rotation is not hindered. Note that
such a chain does not correspond to the so-called Kratky-
Porod chain@13#. The constraint equation for the case de-
scribed is given by@]tW (s,t)/]s#251/R2. In general, the

reader should decide whether or not a particular physical
polymer under study can be modeled by a chain responding
to some kind of rigid constraint described by an equation of
the form of Eq.~3.23!. Mechanical constraints that involve
the velocity in a way that does not reduce to a time differ-
entiation of Eq.~3.23! are excluded from our description
since the associated forces involve energy dissipation@25#.
Another important class of systems that are beyond the scope
of this work are those responding to constraints formulated
as inequalities. An example is a system whose local radius of
curvature is forced to be larger than a minimum value.

The existence of constraints gives rise to a force that we
have calledgW (s,t). In the term fWext we have gathered the
forces due to interactions with external fields such as gravi-
tational, electric, or magnetic. Except for the constraint
forces, which will be discussed later on, we demand only
that fW int as well asfWext are functions ofcW (s,t), of external
parameters, and of time. No explicit functional form for
these forces, however, has to be assumed in our derivation.

Equations~3.19! and ~3.20! do not constitute a closed
system of differential equations forcW (s,t) and uW (s,t) until
fWHa(s,t) is specified in terms of these two fields. The rela-
tionship between the hydrodynamic force andcW (s,t) and
uW (s,t) for the polymer can be obtained by realizing that the
induced force densityfW(s,t) in Eq. ~3.9! is the force that the
segment placed ats exerts on the fluid due to its motion.
Consequently, the hydrodynamic force that this segment ex-
periences is directly related to the induced force density sim-
ply by

fWHa~s,t !52 fW~s,t ! ~3.24!

due to the action-reaction principle. Then, using this relation
between the induced force and the hydrodynamic forcefWHa

together with Eqs.~3.15! and ~3.21!, Eqs.~3.19! and ~3.20!
become

cẆ~s,t !5uW ~s,t !, ~3.25!

m̃uẆ ~s,t !52E
2L/2

L/2

ds8jWW~s,s8!•@uW ~s8,t !2cW~s8,t !•bWW #

1 fW int~s,t !1 fWext~s,t !1m̃scW~s,t !•bWW •bWW 1 fWb~s,t !

1gW ~s,t !1 fWR~s,t !. ~3.26!

The first term on the right-hand side of Eq.~3.26! describes
a nonlocal interaction in space, reflecting the hydrodynamic
interactions between differents segments of the particle.

The main difference of the induced force~IF! method and
the so-called Oseen-Burgers~OB! procedure employed by
Broersma@27–29# and by Yamakawa and co-workers@30–
33# is the following: the location of the force in the IF
method is at the surface of the particle, accounting for the
discontinuities of the velocity gradient through the boundary,
while the OB method locates the force on the central line.
Another difference lies in the fact that in the IF method, the
velocity field at a given surface element is imposed to be the
same as the velocity of the particle at the same surface ele-
ment, which is clearly a statement of stick boundary condi-
tions, while the OB procedure imposes that the average of
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the velocity field on a section orthogonal to the central line
equals the velocity of the particle at the same central line
point. This last condition resembles the stick boundary con-
dition, but does not have a sound physical justification. Both
methods, however, lead to the same results when the thick-
ness of the semiflexible chain is very small compared to the
global size as, for instance, for infinitely long cylinders
@16,32#, but it gives significantly different results for par-
ticles whose aspect ratioa/L is not infinitely small@16,27–
29#. The IF method gives notably better agreement with re-
spect to experiments and numerical calculations@34–37#
than the OB procedure.

Representation in a complete and orthonormal set
of functions

We will now express Eqs.~3.25! and~3.26! in terms of an
orthogonal set of functions, explicitly taking into account the
constraint forces. This procedure permits us to pass from a
continuum description of the chain, where the variables are
positions and velocities of the segments, to a discrete picture,
where the variables are the components ofcW (s,t) and
uW (s,t) in the chosen basis. These components of the fields
describe global motions of the chain and, furthermore, per-
mit us to establish an analogy between the motion of a single
semiflexible continuous chain and that of a set of particles
whose coordinates are precisely the components of the fields.

Let us consider a complete and orthonormal set of func-
tionsw i(x), defined in some intervalxP@a,b#, i.e.,

E
a

b

dxw i~x!w j~x!5d i j , ~3.27!

(
i

w i~x!w i~x8!5d~x2x8!. ~3.28!

For simplicity, we will take21<x<1. Choosingx[2s/L,
a given function ofs, x(s,t)5x(x,t) can be expressed as

x~x,t !5(
i

x i~ t !w i~x!, ~3.29!

where the sum is extended over all the values ofi and

x i~ t !5E
21

1

dxx~x,t !w i~x!. ~3.30!

In this way we can expandcW (s,t), uW (s,t), and all the forces
in terms of the basis functions. Introducing these expansions
in Eqs.~3.25! and~3.26! and using Eq.~3.27!, we obtain the
equation of motion for the components, referred to as mo-
ments from now on,

cẆ i~ t !5uW i~ t !, ~3.31!

m̃uẆ i~ t !52
L

2(j jWW i j •@uW j~ t !2cW j~ t !•bW
W #1 fW i

int~ t !1 fW i
ext~ t !

1m̃scW i~ t !•bW
W
•bWW 1 fW i

b~ t !1gW i~ t !1 fW i
R~ t !, ~3.32!

where the components of the friction kernel, or friction mo-
ments, are defined as

jWW i j[E
21

1

dxdx8w i~x!jWW~x,x8!w j~x8!, ~3.33!

which are 333 symmetric matrices. In addition, due to the
invariance of the friction kernel under the changes→s8 we

have thatjWW i j5jWW j i . On the other hand,fW i
R(t) satisfies

^ fW i
R~ t !&50, ~3.34!

^ fW i
R~ t ! fW j

R~ t8!&52kBTjWW i jd~ t2t8!, ~3.35!

as follows from Eqs.~3.17!, ~3.18!, and ~3.33!. Again, the
averages are performed over all the realizations of the ran-
dom stress tensor introduced in Eq.~2.3!, keeping the con-
figuration of the system frozen. Furthermore, Eq.~3.14! be-
comes

(
j

jWW i j •mW
W
jk5(

j
mWW i j •jW

W
jk51WW S 2L D 2d ik , ~3.36!

where the mobility momentsmWW i j are defined as the friction
moments in Eq.~3.33!.

Equation~3.23! is equivalent to a set of constraint equa-
tions for the moments of the configuration. A possible
scheme, although it is not unique, to obtain these constraint
equations is to multiply both sides of Eq.~3.23! by w i(x) and
integrate with respect tox. One then gets the system ofn
equations

La~$cW i%!50 for a51, . . . ,n. ~3.37!

To account for the constraint forces, we introduce a set of
n Lagrange multiplyers$la% @24#. Thus the moments of the
constraint forces can be written as

gW i5(
a

n

la

]La

]cW i
. ~3.38!

In order to determine the Lagrange multipliers, let us differ-
entiate Eq.~3.37! twice with respect to time. We obtain

(
i

]La

]cW i
•uẆ i52(

i , j

]2La

]cW i]cW j
:uW juW i . ~3.39!

Multiplying both sides of Eq.~3.32! by ]La /]cW i , summing
overa, and then using Eqs.~3.38! and~3.39!, we can arrive
at

la5(
b

Hab
21H 2m̃(

i , j

]2Lb

]cW i]cW j
:uW juW i1(

i

]Lb

]cW i
•

L

2

3(
j

@jWW i j •~uW j2cW j•bW
W !2 fW i2 fW i

R#J , ~3.40!

where herefW i[ fW i
int1 fW i

ext1m̃scW i•bW
W
•bWW 1 fW i

b and we have de-
fined then3n matrix
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Hab[(
i

]La

]cW i
•

]Lb

]cW i
. ~3.41!

Using the expressions for the constraint force and the
Lagrange multipliers, Eqs.~3.31! and ~3.32! take the form

cẆ i5uW i , ~3.42!

m̃FuẆ i1(
a,b

]La

]cW i
Hab

21(
j ,k

]2Lb

]cW j]cW k
:uW kuW j G

5(
j

F1WW d i j2(
a,b

]La

]cW i
Hab

21]Lb

]cW j
G•F2

L

2(k jWW jk•~uW k

2cW k•bW
W !1 fW j1 fW j

RG . ~3.43!

Finally, for ease of notation, let us introduce the tensors

RW
WW
i jk[(

a,b

]La

]cW i
Hab

21 ]2Lb

]cW j]cW k
, ~3.44!

QWW i j[(
a,b

]La

]cW i
Hab

21]Lb

]cW j
, ~3.45!

with the properties

(
j
QWW i j •QW

W
jk5QWW ik , ~3.46!

as follows from Eqs.~3.41! and ~3.45!,

]La

]cW i
•uW i50⇒uW i5(

j
~1WW d i j2QWW i j !•uW j , ~3.47!

which is obtained by differentiating Eq.~3.37! once with
respect to the time, and

(
j
QWW i j •RW

WW
jkl5RW

WW
ikl , ~3.48!

making use again of Eqs.~3.41!, ~3.44!, and~3.45!.
Here we have derived these Langevin equations for the

moments, that is, for global motions of the particle. Langevin
equations are suitable to perform Brownian dynamics simu-
lations. Equations~3.42! and ~3.43! describe the motion of
these global motions of the particle in the complete phase
space when rigid constraints are present@38,39#.

IV. THE VELOCITY DISTRIBUTION
AND THE SMOLUCHOWSKI EQUATION

In this section we will use the set of stochastic equations
~3.42! and ~3.43! to derive the equation for the evolution of
the probability density in configuration and velocity spaces
when inertial effects are negligible. Directly neglecting the
acceleration terms from the stochastic system of equations
~3.42! and~3.43! leads to a nonlinear Langevin equation with
d-correlated noise. It is well known that there are uncertaini-
ties in the interpretation of that kind of equation@40# when
the noise is due to thermal fluctuations, in the literature re-
ferred to as the Itoˆ-Stratonovich dilemma. Here we overcome
this difficulty by writing the evolution equation for the prob-
ability distribution in the complete phase space, referred to
as Kramers equation. Then, we will assume that to the time
scales under consideration, the inertial effects are negligible
compared to the frictional effects. Although this derivation in
principle could be done for the general situation, we will
concentrate on the particular case of rodlike particles to
make more transparent the main points of this paper. Due to
the analogy between the Kramers equation and the Boltz-
mann equation, the procedure to be developed here has many
points in common with the derivation of the so-callednormal
solutionof the Boltzmann equation@41# and has the remark-
able property of yielding the Smoluchowski equation for the
probability distribution in configuration space as well as the
velocity distribution compatible with it. This velocity distri-
bution is non-Maxwellian and is planned to be used in a
forthcoming paper in the derivation of transport equations,
proving that its non-Maxwellian nature is conceptually very
important.

A. The Kramers equation

Since the state of the chain is completely given by the set
of moments$cW i(t)% of the configuration and$uW i(t)% of the
velocity, let us consider that we have a phase space whose
coordinates are these moments. The actual state of the sys-
tem will be represented by a single point in this space. Let us
then consider the density of state points in phase space, i.e.,

W~$cW i%,$uW i%,t ![)
i

d„cW i2cW i~ t !…d„uW i2uW i~ t !…. ~4.1!

According to Ref. @40#, the probability density in phase
space is given by

C~$cW i%,$uW i%,t !5^W~$cW i%,$uW i%,t !&, ~4.2!

where the average is done over all the realizations of the
random force. Since the number of phase space points is
conserved, we can write a continuity equation forW, which
reads

]W

]t
52(

i
F ]

]cW i
•cẆ iW1

]

]uW i
•uẆ iWG . ~4.3!

We then use Eqs.~3.31! and ~3.32! to eliminatecẆ i and uẆ i
from Eq. ~4.3! and then average this equation to get
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]^W&
]t

52(
i

]

]cW i
•uW i^W&2(

i

]

]uW i
•

1

m̃
(
j
H 2(

k
RW
WW
i jk :uW kuW j

1~1WW d i j2QWW i j !•F2
L

2(k jWW jk•~uW k2cW k•bW
W !1 fW jG J ^W&2(

i

]

]uW i
•

1

m̃
(
j

~1WW d i j2QWW i j !^ fW j
RW&. ~4.4!

The last term gives

^ fW i
RW&52kBT

1

m̃
(
j ,k

jWW i j •~1W
W d jk2QWW jk!•

]

]uW k
^W& ~4.5!

according to Appendix B. Making use of this result in Eq.~4.4!, one arrives at the Kramers equation

]C

]t
52(

i

]

]cW i
•uW iC2(

i , j

1

m̃

]

]uW i
•~1WW d i j2QWW i j !•F2

L

2(k jWW jk•~uW k2cW k•bW
W !1 fW j GC

1(
i

]

]uW i
•

1

m̃
(
j ,k

RW
WW
i jk :uW kuW jC1(

i , j

kBT

m̃2

]

]uW i
•(
k,l

~1WW d ik2QWW ik!•jW
W
kl•~1W

W d l j2QWW l j !•
]

]uW j
C. ~4.6!

It is important to note from Eq.~4.6! that the relevant
quantities bearing the information concerning the dynamics

of the solvent are the friction tensorsjWW i j instead of the mo-

bility tensorsmWW i j . These friction tensors are functions of the
configuration of the system but not of the velocities, in view
of Eqs.~3.11! and ~3.36!.

B. Normal solution of the Kramers equation
for rodlike particles

For the sake of clarity, we will restrict our derivation to
the case of rodlike particles. The configuration field for a
rigid rod of lengthL is given by

cW~s,t !5RW ~ t !1ssŴ~ t !, sP@2L/2,L/2#, ~4.7!

whereRW is the position of the center of mass andsŴ is the unit
vector in the direction of the axis. Equation~4.7! expresses
in fact the constraint. For this particular case it is convenient
to use Legendre polynomials as the basis set

Pl~x!5S 2l11

2 D 1/2 1

2l l !

d

dxl
~x221! l . ~4.8!

Note the normalization factorA(2l11)/2 included in the
above expression. This choice is especially useful since the
moments of the configuration field given in Eq.~4.7! simply
read

cW0~ t !5A2RW ~ t !, ~4.9!

cW1~ t !5
L

A6
sŴ~ t !, ~4.10!

cW l~ t !50 for l>2. ~4.11!

Differentiating Eq.~4.7! with respect to time and calculating
the moments of the velocity field, we get

uW 0~ t !5A2RẆ ~ t !, ~4.12!

uW 1~ t !5
L

A6
sŴ
˙
~ t !5

L

A6
vW ~ t !3sŴ~ t !, ~4.13!

uW l50 for l>2, ~4.14!

wherevW (t) is the angular velocity. Since we have neglected
rotations around the axis, this vector lies in the plane or-

thogonal tosŴ. In this case, the equations for the constraints
can be directly obtained from Eqs.~4.10! and~4.11!. That is,

L1~$cW i%!5c1
22

L2

6
50, ~4.15!

L l~$cW i%!5cl
250 for l>2. ~4.16!

Equations~4.9!–~4.16! indicate that the moments forl>2
are irrelevant coordinates, which will be ignored from now
on. From Eq.~4.6!, after some algebra, we arrive at the
Kramers equation for the rod written in the most convenient
way
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]

]t
C52

]

]RW
•uW C2

KW

M
•

]

]uW
C2RW •vW C2

TW

I
•

]

]vW
C

1
]

]uW
•

zWW t
M
•F ~uW 2RW •bWW !1

kBT

M

]

]uW
GC

1
z r
I

]

]vW
•F ~vW 2VW !1

kBT

I

]

]vW
GC, ~4.17!

where we have defined the velocity of the center of mass

uW (t)[RẆ (t). Furthermore, the total effective forceKW acting
on the particle is

KW ~ t !5E
2L/2

L/2

ds@ fW int~s,t !1 fWext~s,t !1m̃scW~s,t !•bWW •bWW

1 fWb~s,t !#

5
L

A2
@ fW0

ext~ t !1 fW0
b~ t !#1MsRW •bW

W
•bWW [KW ext~ t !1KW b~ t !

1MsRW •bW
W
•bWW ~4.18!

and the total effective torqueTW

TW ~ t !5E
2L/2

L/2

dsssŴ~ t !3@ fW int~s,t !1 fWext~s,t !

1m̃scW~s,t !•bWW •bWW 1 fWb~s,t !#

5
L2

2A6
sŴ~ t !3@ fW1

ext~ t !1 fW1
b~ t !#1I ssŴ3~sŴ•bWW •bWW !

[TW ext~ t !1TW b~ t !1I sVW •~RW VW !, ~4.19!

where the contributions due to internal forces identically
cancel. We have also defined the total mass and the moment
of inertia

M[m̃L, ~4.20!

I[ 1
12 m̃L3. ~4.21!

In Eqs. ~4.18! and ~4.19! Ms and I s are also given by Eqs.
~4.20! and ~4.21!, respectively, by replacingm̃ by the dis-
placed solvent mass per unit of lengthm̃s defined after Eq.
~3.21!. The translational friction tensor is given by

zWW t[
L2

2
jWW00, ~4.22!

whereas the rotational friction coefficient reads

z r[
L4

24
j11

' , ~4.23!

where we have used the property

jWW115j11
' ~1WW 2sŴsŴ !1j11

i sŴsŴ ~4.24!

due to the rotational symmetry of the rod around its axis and
the inversion symmetry with respect to its center. In Refs.
@16,18# explicit expressions for the friction coefficient and
the rotational friction coefficient as functions of the aspect
ratio a/L have been obtained, in good agreement with nu-
merical calculations@34–36# and experiments@37#. Finally,
we have also introduced the rotational operator@24#

RW [sŴ3
]

]sŴ
~4.25!

and defined

VW [sŴ3~sŴ•bWW !. ~4.26!

The Kramers equation contains more information than
needed to deal with long-time properties of polymer solu-
tions. In normal situations the characteristic time scales for
the relaxation of the velocity are much shorter than those for
configurational changes due to the fact that the inertial ef-
fects are much smaller than the frictional effects. Let us in-
troduce the deviations with respect to the velocities imposed
by the external flux

DuW [uW 2RW •bWW , ~4.27!

DvW [vW 2VW . ~4.28!

With this change, the differentiation with respect to the ve-
locity is transformed as

]

]uW
→

]

]DuW
, ~4.29!

]

]vW
→

]

]DvW
. ~4.30!

Differentiation with respect to the position and the rotational
operator results in

]

]RW
→

]

]RW
2bWW •

]

]DuW
, ~4.31!

RW→RW 2RW VW •
]

]DvW
. ~4.32!

Under such transformations, Eq.~4.17! becomes
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]

]t
C52~DuW 1RW •bWW !•F ]

]RW
2bWW •

]

]DuW
GC2

KW

M
•

]

]DuW
C

2~DvW 1VW !•FRW 2~RW VW !•
]

]DvW
GC2

TW

I
•

]

]DvW
C

1
]

]DuW
•

zWW t
M
•FDuW 1

kBT

M

]

]DuW
GC1

z r
I

]

]DvW
•FDvW

1
kBT

I

]

]DvW
GC. ~4.33!

This equation can be written in a more compact form by
introducing theconvectiveoperator

G~c!52~DuW 1RW •bWW !•F ]

]RW
2bWW •

]

]DuW
G2

KW

M
•

]

]DuW
2~DvW

1VW !•FRW 2~RW VW !•
]

]DvW
G2

TW

I
•

]

]DvW
~4.34!

and thediffusiveoperator

G~d!5
]

]DuW
•

zWW t
Mg

•FDuW 1
kBT

M

]

]DuW
G1

]

]DvW
•FDvW

1
kBT

I

]

]DvW
G , ~4.35!

which will be useful in what follows. We then obtain

]

]t
C5G~c!C1gG~d!C. ~4.36!

In Eq. ~4.35! we have introduced the coefficient

g[
z r
I
, ~4.37!

which corresponds to the reciprocal of the relaxation time
related to the rotational inertial effects of a Brownian par-
ticle.

The large friction limit of Eq.~4.36! will lead us to the
Smoluchowski equation. We will follow the line of reason-
ing as described in Refs.@40,42,43#. Then one expands the
probability distribution function in the form

C5C~0!1
1

g
C~1!1•••. ~4.38!

Note that in our expansion we will regardg as being very
large or, in other words, that the inertial effects relax very
fast compared to configurational changes. The Smolu-
chowski equation will then be valid for times larger than
g21. Furthermore, the components of the tensor

1

Mg
zWW t ~4.39!

are of the order of unity since these components simply com-
pare relaxation times for inertial effects for lengthwise and
sidewise motion withg21 that are of the same order of mag-
nitude.

Our next step is to replaceC in Eq. ~4.36! by the expan-
sion given in Eq.~4.38! and equate terms of the same order
in g. Thus the zeroth-order solution is obtained from the
equation

G~d!C~0!50 ~4.40!

and is found to be

C~0!~DuW ,DvW ,RW ,sŴ,t !5
1

N
e2MDu2/2kBTe2IDv2/2kBTf~0!~RW ,sŴ,t !

~4.41!

due to the fact that the differential operatorG (d) acts only on
the velocities. In this equation,N is the normalization con-
stant, which has been computed in Appendix C. The un-

known functionf (0)(RW ,sŴ,t) is only configuration dependent.
One can also see that the zeroth-order solution leads us to a
distribution function in the velocities space corresponding to
the local equilibrium. This is often referred to as ‘‘equilibra-
tion in momentum space’’@6#. Furthermore, the integrability
condition for the next order, obtained by integrating both
sides of the equation for the next order@Eq. ~4.45!# with
respect to the velocities, imposes

E dDuWdDvW F ]

]t
C~0!2G~c!C~0!G50, ~4.42!

that is,f (0)(RW ,ŝW,t) has to satisfy

]

]t
f~0!1

]

]RW
•~RW •bWW !f~0!1RW •VW f~0!50, ~4.43!

which is precisely a continuity equation forf (0)(RW ,sŴ,t). In-
tegrating Eq.~4.41! with respect to the velocities~see Ap-
pendix C!, we get that, up to this order of approximation,

f (0)(RW ,sŴ,t) is the probability distribution function in the
configuration space

c~RW ,sŴ,t ![
1

NE dDuWdDvW e2MDu2/2kBTe2IDv2/2kBTf~0!

3~RW ,sŴ,t !

5f~0!~RW ,sŴ,t !. ~4.44!

To summarize, from the zeroth order in theg21 we have
obtained, on one hand, the above mentioned equilibration in
momentum space and, on the other hand, the evolution equa-
tion for the probability distribution function in the configu-
ration space, which is a continuity equation describing the
motion of an ‘‘ideal fluid’’ @14# without dissipation.

The first-order solution satisfies the equation

]

]t
C~0!2G~c!C~0!5G~d!C~1!, ~4.45!
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which leads us to

C~1!5
1

N
e2MDu2/2kBTe2IDv2/2kBTFf~1!1S DuW •AW t*1DvW •AW r

2
M

2kBT
DuW •bWW * •DuW 2

I

2kBT
DvW •~RW VW !•DvW Df~0!G ,

~4.46!

where use has been made of the definitions

AW t*[gMzWW t
21
•AW t , ~4.47!

bWW *[gMzWW t
21
•bWW . ~4.48!

In these expressions, the operatorsAW t andAW r , acting only on

RW andsŴ, respectively, are given by

AW t[
KW

kBT
2

]

]RW
2

M

kBT
~RW •bWW •bWW !, ~4.49!

AW r[
TW

kBT
2RW 2

I

kBT
VW •~RW VW !. ~4.50!

Again, the unknown functionf (1)(RW ,sŴ,t) has to satisfy

]

]t
f~1!1

1

2
~ trbWW *1RW •VW !S RW •bWW • ]

]RW
f~0!

1RW •~VW f~0!!D 1
kBT

M

]

]RW
•~AW t*f~0!!

1
kBT

I
RW •~AW rf

~0!!1S RW •bWW • ]

]RW
1~RW •VW !1VW •RW D

3S f~1!2
1

2
trbWW *f~0!2

1

2
~RW •VW !f~0!D

50 ~4.51!

which follows from the corresponding integrability condition
similar to Eq.~4.42!, now considering the second order.

One can construct the probability distribution function

C(DuW ,DvW ,RW ,sŴ,t) up to first order ing21, yielding

C5
1

N
e2MDu2/2kBTe2IDv2/2kBTH f~0!1

1

g Ff~1!1S DuW •AW t*

1DvW •AW r2
M

2kBT
DuW •bWW * •DuW

2
I

2kBT
DvW •~RW VW !•DvW Df~0!G J . ~4.52!

The form of the probability distribution function reflects its
non-Gaussian nature due to the appearance of linear and qua-
dratic terms inDuW andDvW .

The probability distribution function in the configuration
space is obtained, as in Eq.~4.44!, after integration of Eq.
~4.52! with respect to the relative velocities

c~RW ,sŴ,t !5f~0!1
1

g Ff~1!2S 12trbWW *1
1

2
~RW •VW ! Df~0!G .

~4.53!

Then, Eq.~4.52! can be rewritten by usingc(RW ,sŴ,t), that is,

C5
1

N
e2MDu2/2kBTe2IDv2/2kBTH c1

1

g
~DuW •AW t*1DvW •AW r !c

1
1

2g F S 1WW 2
M

kBT
DuW DuW D :bWW *

1S 1WW 2
I

kBT
DvW DvW D :~RW VW !GcJ . ~4.54!

The error made when replacingf (0) by c in this equation is
of the orderg22 and is therefore negligible in our approxi-
mation. After time differentiation of both members of Eq.
~4.53!, using the integrability conditions given in Eqs.~4.43!,
and ~4.51!, and employing again Eq.~4.53! to eliminate
f (0) andf (1), we arrive at the Smoluchowski equation

]

]t
c52RW •bWW •

]

]RW
c2RW •~VW c!

1kBT
]

]RW
•zWW t

21
•S 2

KW ext1KW b

kBT
1

]

]RW

1
M2Ms

kBT
RW •bWW •bWW D c1

kBT

z r
RW •S 2

TW ext1TW b

kBT

1RW 1
I2I s
kBT

VW •~RW VW !D c, ~4.55!

where use has been made of the definition ofKW andTW given
in Eqs.~4.18! and~4.19!. Equations~4.54! and~4.55! are the
main results of this paper.

V. CONCLUSIONS

In this paper we have developed a generalmesoscopic
formalism to deal with the dynamics of suspensions. Al-
though we have analyzed a particular case, it is not restricted
to semiflexible or rigid polymers in dilute solution, but it can
be applied to semidilute and concentrated suspensions either
of flexible, semiflexible, or rigid polymers, spheres, micelles,
bubbles, and surfaces immersed in solvents. The main hy-
pothesis underlying the theory is that the suspended objects
need to be much larger than the size of the solvent molecules
so that the dynamics of the solvent could be described by
means of a continuum theory. In a first step, we have derived
Langevin equations where the friction tensors are explicitly
given and the statistical properties of the random forces fol-
low from those of the fluctuating velocity field. The formal-
ism differs from the Oseen-Burgers procedure and it has
been proved that it leads to more accurate results. The evo-
lution of the system in phase space is governed by these
Langevin equations and it is found to satisfy the Kramers
equation, where positions and velocities are independent
variables.
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The long-time motion of the suspension has been obtained
from the Kramers equation. The procedure employed here is
analogous to that leading to the normal solution of the Boltz-
mann equation, in which it is assumed that the processes
related to the relaxation of the velocity are much faster than
changes in the configuration of the system. This separation in
time scales is ensured in our case if the frictional effects are
much more important than inertial effects. It is worth point-
ing out that the Kramers equation cannot correctly describe
the short-time dynamics of our system, 102821026 s, since
the explicit time dependence of fluid motion has been ne-
glected. This point has not been sufficiently emphasized in
the literature@19#. In the case of flexible polymers in dilute
solution, for instance, the mass of the solvent dragged with
the coil is much more important than the mass of the poly-
mer itself and therefore it is crucial in the analysis of its
short-time behavior@15#. These inertial effects associated
with fluid motion lead, furthermore, to the long-time tail be-
havior of the velocity autocorrelation function of a Brownian
particle@12,44#. The use of the quasistatic approximation for
the fluid dynamics, as it has been done here, introduces an
enormous simplification in the calculation that, in addition,
leads to the correct behavior at long times. In this way, our
Kramers equation must be considered as a minimal model
containing the relevant information to derive the long-time
behavior when frictional effects are dominant in front of in-
ertial effects.

Equation~4.54! gives the probability distribution in the
complete phase spaceC in our approximation. The proce-
dure developed permits us to obtain the explicit dependence
of C in the velocity, while the dependence in the configura-
tion appears throughc, which is precisely the solution of the
Smoluchowski equation, Eq.~4.55!. One of the more inter-
esting aspects of the velocity dependence ofC is that it does
not correspond to a local Maxwellian distribution, but addi-
tional terms appear. In the analysis of the dynamics of sus-
pensions, it has been customary to supplement the solution
of the Smoluchowski equation with a local Maxwellian dis-
tribution function @6#. However, our derivation points out
that, to the lowest order in 1/g, we get a continuity equation
for c and a local Maxwellian, while, up to first order, one
obtains correction terms with respect to the local Maxwellian
behavior in the velocity distribution and the Smoluchowski
equation forc. By means of Eq.~4.54!, the macroscopic
behavior of a given physical magnitude associated with the
dynamics of the Brownian particles can be obtained in the
same way as done in the theory of simple liquids@45#. To
clarify, let us take the simplest case of a system with neither
an externally applied velocity field nor external forces acting
on the particles. Let us then calculate the macroscopic par-
ticle flow by averaging the mesoscopic particle density. Un-
der certain conditions of decoupling between translational
and rotational motion, we have~the particles are noninteract-
ing and the indexi labels the particles!

JW~rW,t ![K (
i

N

uW id~rW2RW i !L 52kBT^zWW t
21&•

]

]rW
r~rW,t !,

~5.1!

where r(rW,t)[^( id(rW2RW i)& is the particle’s number den-
sity. Clearly, this expression is nothing but Fick’s law,

where, in addition, we can identify the diffusion coefficient
in terms of geometrical aspects of the particle and the dy-

namics of the solvent throughzWW t . The use of a Maxwellian
distribution in the average would have led us toJW (rW,t)50.
To recover Fick’s law it would have been necesssary to re-
late the velocity of the particles to the Brownian thermody-
namic force given in Eq.~1.1! and then write

uW i5zWW t
21
•FW i

B ~5.2!

as a result of a force balance~the inertia is neglected! be-
tween the frictional force and the Brownian thermodynamic
force. Such a procedure is not always obvious, as in the case
of the stress tensor of a suspension of rigid rods, for instance.
Some time ago, there were still some doubts about whether
or not the Brownian thermodynamic force played the same
role as the external and internal forces in the expression of
the stress tensor@46–50#. The derivation of the expression
for the stress tensor from the mesoscopic theory presented
here is planned to be developed in a forthcoming paper.

Another important result of this paper is shown in Eq.
~4.55!, which is the Smoluchowski equation that describes
the evolution of the probability density in configuration
space. First, we want to mention that the mesoscopic theory
presented here led us to the knowledge of the friction tensors
since the hydrodynamic nature of the evolution of the solvent
is a basic ingredient of the theory itself@15#. This permits us
to deal with different situations such as, for instance, vis-
coelastic solvents, provided that the equation of motion for
the velocity field is known.

Second, we have obtained several additional contributions
acting as if they were effective forces and torques together
with the total external force and torque. Let us first analyze
the role ofKW b by considering that there is a gravitational
field acting on the system that is in thermodynamic equilib-
rium. Thus

KW ext1KW b52~M2Ms!gzŴ, ~5.3!

where2gzŴ is the gravitational field, parallel to thez axis of
the laboratory reference frame, and use has been made of
Eqs.~4.18! and~3.22!. This is obviously the balance between
the weight of the particle and the hydrostatic force. Clearly,
solving the Smoluchowski equation for these equilibrium
conditions gives a number density distribution

c;e2~M2Ms!gz/2kBT. ~5.4!

Thus, to have a thermodynamically stable suspension of
macroscopic sizez;10 cm at room temperature, it is neces-
sary that (M2Ms);kBT/gz;10218 g. This implies that in
the situations of interest for Brownian systems of particles of
size;102421026 cm, the masses of the particles and of the
displaced fluid must be rather close or practically identical.
This reinforces our statement about the important role that
fluid inertia plays in the short-time dynamics.

The analysis of the force due to the term

(M2Ms)RW •bW
W
•bWW is also very simple. Take, for instance, a

system in pure rotation around thez axis. This force is then
directed in the radial direction, towards the external wall if
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M.Ms or towards the axis of rotation ifM,Ms . Thus this
stands for a centrifuge force due to the curvature of the flow
lines of the carrier fluid. For the rotational motion, the analo-

gous term proportional toVW •(RŴ VW ) tries to make the cylin-
ders lie in a plane orthogonal to the axis of rotation if
I.I s and align the particles with the axis of rotation if
I,I s . This effect is, however, very small for Brownian par-
ticles and, in fact, of higher order than other shear-dependent
contributions neglected in linearizing the Navier-Stokes
equation@20#. These neglected contributions lead to friction
tensors depending on the velocity gradient, which are re-
sponsible for the appearance of lift forces on the particles,
and will be discussed elsewhere.

In summary, this paper has been devoted to the develop-
ment of a theory for suspension dynamics based on a meso-
scopic starting point, which allows for a precise description
of the solvent dynamics and its influence on the particle’s
motion. In this way we have related the friction coefficients
to integrals involving the Oseen tensor and geometrical fac-
tors. From a statistical point of view, we arrived at the non-
equilibrium velocity distribution compatible with the Smolu-
chowski equation. Finally, theab initio treatment of the
properties of the solvent permitted us to obtain in a natural
way buoyancy and centrifugal forces in the Smoluchowski
equation that are currently added without justification.

ACKNOWLEDGMENTS

The author wishes to thank Professor J. M. Rubı´ and Pro-
fessor D. Bedeaux for their support and many fruitful discus-
sions. Dr. I. Pagonabarraga is also aknowledged. This work
has been supported by DGICyT, Grant No. PB92-0895.

APPENDIX A: THE SURFACE d FUNCTION

In this appendix we will discuss the meaning of the sur-
faced function used in Sec. II.

For simplicity’s sake, we will consider only that the shape
of the sections is circular and independent of the actual con-
figuration of the system. The surface of the particle is given
by the points satisfyingr'5a. Very close to the surface,
according to Eq.~3.4!, the volume elementdrW and the area
element at the surfacedA read

drW5S 12
r'

R~s,t !
cosw D r'dr'dwds, ~A1!

dA5S 12
a

R~s,t !
cosw Dadwds. ~A2!

We define hered (s)(rW,t), referred to as the surface delta
function, as the generalized function that satisfies the prop-
erties

E d~s!~rW !r'dr'dwds5A, ~A3!

E d~s!~rW !g~rW !r'dr'dwds5E g~r'5a,w,s!dA,

~A4!

whereA is the total area of the particle andg(rW) is some
function defined in the bulk. One can easily see from Eqs.
~A1! and ~A2! that the surfaced function is given by

d~s!~rW,t !5d~r'2a!S 12
a

R~s,t !
cosw D . ~A5!

In the case in which the radius of curvature is much larger
than the radius of the section, the surfaced function reduces
to d(r'2a).

APPENDIX B: CALCULATION OF Š f¢ j
RW‹

Employing the Furutsu-Novikov formula@51#, the last
term in Eq.~4.4! can be written as

^ fW j
R~ t !W@ fWk

R#&5^ fW j
R&^W&

1E
2`

t

dt8(
k

^ fW j
R~ t ! fWk

R~ t8!&•K dW

d fWk
R~ t8!

L
5 limt8→t2kBT(

k
jWW jk•K dW

d fWk
R~ t8!

L , ~B1!

where Eqs.~3.17! and ~3.18! have been used. Note that the
factor 2 has been dropped andt8→t2 due to causality. The
argument ofW simply indicates that this density is function-
ally dependent of the random force through$uW i(t)% and

$cW i(t)%. The averages are again with the configuration fro-
zen. The functional derivative is defined as

dW@ f i ,a
R ~ t !#

d f j ,b
R ~ t8!

[S d

ds
W@ f i ,a

R ~ t !1sdabd i jd~ t2t8!# D
s50

.

~B2!

Here greek indices stand for Cartesian coordinates of the
vectors. The functional derivative contained in Eq.~B1! can
be reduced to

dW

d fWk
R~ t8!

52(
l

]

]uW l
SW duW l~ t !

d fWk
R~ t8!

D . ~B3!

The properties of thed functions contained inW have been
used. Finally, formally integrating Eq.~3.43! in terms of the
forces and applying the functional derivative to this formal
solution, we arrive at

duW l~ t !

d fWk
R~ t8!

5
1

m̃
È t

dt9(
m

@1WW d lm2QWW lm#•$1WW dmkd~ t82t9!%,

~B4!

where the only contribution whent8→t comes from the term
proportional to the random force. The factor in curly brack-
ets is preciselyd fWm

R(t9)/d fWk
R(t8). Gathering all these results,

we arrive at Eq.~4.5!.
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APPENDIX C: VELOCITY AVERAGES

In this appendix we compute the different integrals in-
volved in the velocity averages. For the center of mass mo-
tion we have

E dDuWe2MDu2/2kBT5S 2pkBT

M D 3/2, ~C1!

which is the normalization constantNu . The second integral,
corresponding to the exponential together with the second
rank tensorDuW DuW , is given by

1

Nu
E dDuW ~DuW DuW !e2MDu2/2kBT5

kBT

M
1WW . ~C2!

Integrals of the same kind but with tensors ofDuW of odd rank
are clearly zero. Finally, the integral of the four-rank tensor
DuW DuW DuW DuW and the exponential yields

1

Nu
E dDuW ~DuaDubDugDun!e2MDu2/2kBT

5S kBTM D 2@dabdgn1dagdbn1dandbg#. ~C3!

The integrals for the rotational velocity follow lines simi-
lar to these for the center of mass velocity. One has to take

into account, however, that for a fixed vectorsŴ the domain of
integration is bidimensional and lies in the plane orthogonal

to sŴ. According to this we have

E dDvW e2IDv2/2kBT5S 2pkBT

I D , ~C4!

which is the normalization constantNv . The integral analo-
gous to Eq.~C2! in this case gives

1

Nv
E dDvW ~DvW DvW !e2IDv2/2kBT5

kBT

I
~1WW 2sŴsŴ !. ~C5!

The last integral leads us to

1

Nv
E dDvW ~DvaDvbDvgDvn!e2IDv2/2kBT

5S kBTI D 2@T abgn
~1! 2T abgn

~2! 13T abgn
~3! #, ~C6!

where the tensorsT abgn
( i ) read

T abgn
~1! [dabdgn1dagdbn1dandbg , ~C7!

T abgn
~2! [dabsŴgsŴn1dagsŴbsŴn1dansŴbsŴg1dbgsŴasŴn1dbnsŴasŴg

1dgnsŴasŴb , ~C8!

T abgn
~3! [sŴasŴbsŴgsŴn . ~C9!

The normalization constantN is defined as

N[NuNv . ~C10!
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